Baker’s cysts in knees with chronic osteoarthritic pain: a clinical, ultrasonographic, radiographic and scintigraphic evaluation

Dimitrios Chatzopoulos · Efstratios Moralidis · Pavlos Markou · Vassilios Makris · Georgios Arsos

Abstract This study aimed to determine the ultrasonographic prevalence of Baker’s cysts in knees with chronic osteoarthritic pain and investigate for cysts correlates and relationships with scintigraphically established synovitis. Consecutive patients with chronic osteoarthritic knee pain underwent clinical examination, X-rays, ultrasonography and early-phase bone scintigraphy. Eighty-nine Baker’s cysts were detected in 328 knees with chronic osteoarthritic pain (27%), whereas one cyst was identified among the 54 non-osteoarthritic knees (2%, \(P < 0.001 \)). Baker’s cysts were detected in 72/195 (37%) patients with knee osteoarthritis. Abnormal and intense tracer accumulation in early-phase bone scintigraphy were significantly more frequent in osteoarthritic knees with Baker’s cysts (97 and 56%, respectively), than in those without (89 and 40%, respectively, \(P < 0.05 \) for both). Clinical and radiographic variables could not predict the presence of those cysts. Baker’s cysts are a common ultrasonographic finding in knees with chronic osteoarthritic pain and are associated with synovial inflammation and its grade.

Keywords Baker’s cyst · Bone scintigraphy · Knee · Osteoarthritis · Ultrasonography

Introduction

Baker’s cyst represents a fluid distention of a bursa between the gastrocnemius and semimembranosus tendons through a communication with the knee joint [1, 2]. In knee osteoarthritis, joint structures are biomechanically modified and may be vulnerable to the development of periarticular pathology, including synovial cysts in the popliteal region [3–5]. This knee disorder may be a frequent cause of Baker’s cysts in adults, because of its high prevalence [5, 6]. However, there are few studies dealing exclusively with Baker’s cysts in osteoarthritic knees and additional information may be extracted from other series investigating several features of this disorder [3, 7–11]. In previous work, not always similar criteria have been used for disease definition and a variety of exploratory methods under differing clinical settings have been employed. Thus, various aspects of Baker’s cysts remain open to research, including their pathogenesis and prevalence in the course of knee osteoarthritis, and their association with symptoms and other joint changes.

Although much research focused on cartilage degradation in osteoarthritis, recent work revealed that inflammation may play a more critical role in the development and progression of the disease than once was thought [12, 13]. Since it is believed that synovitis contributes in the development of pain, limitation of movement, joint swelling and
effusion in knee osteoarthritis, we hypothesized that Baker’s cysts formation would also be associated with synovial inflammation. Early-phase bone scintigraphy is an accepted modality for the detection and assessment of severity of inflammation in soft-tissue joint structures [14, 15], whereas ultrasound can effectively image the popliteal region and determine the presence and characteristics of Baker’s cysts [7, 8, 16, 17].

The objective of this study was twofold: (a) to determine the ultrasonographic prevalence of Baker’s cysts in knees with chronic osteoarthritic pain and investigate for its correlates among clinical and radiographic variables and (b) to test our hypothesis using early-phase bone scintigraphy. For this purpose, patients attending an open access outpatient clinic for the assessment of the appropriateness of radiation synovectomy were examined.

Patients and method

Consecutive patients with a diagnosis of osteoarthritis in at least one knee, as recorded in their medical files, underwent ultrasonographic examinations of both knee joints for the investigation of Baker’s cysts. These patients were complaining of chronic knee pain, inadequately controlled by systemic or local pharmacotherapy, and were attending an open access outpatient clinic for the evaluation of the appropriateness of radiation synovectomy. Apart from ultrasonography, participants were submitted also to physical examination, plain radiography and an early-phase bone scan. This array of tests is routinely applied in our facility and conforms to standard examination of patients evaluated for radiation synovectomy, in which the investigation for Baker’s cysts is an essential part [15]. Typically, all examinations were carried out within the day of patients visit or in the next day. The diagnosis of knee osteoarthritis was independently confirmed, based on the criteria of the American College of Rheumatology [18]. Participants were systematically interrogated, medical records were carefully reviewed and if necessary treating physicians were contacted to ensure that no patient enrolled had any of the following characteristics: rheumatoid arthritis, a history of knee trauma, previous knee surgery, intraarticular steroid and hyaluronic acid injections within 3 months before presentation to the clinic or knee disorders secondary to infection or metabolic abnormalities.

A knee-orientated history was taken and knee discomfort in the prior month was graded using a 3-point scale: 0, no pain; 1, pain only at stress limiting daily activities (walking, climbing, weight-lifting); 2, pain at stress and rest (also including nocturnal pain). The range of motion of the knees was measured from full extension to maximum flexion using a goniometer.

All subjects underwent weight-bearing posteroanterior (Fig. 1a) and lateral plain radiography of the knees. Radiographic severity of the disease was classified according to the standard radiological Kellgren–Lawrence grading system for osteoarthritis, defined as follows [19]: 0, no signs of osteoarthritis; 1, minute osteophytes of doubtful importance; 2, definite osteophytes but preserved joint space; 3, definite osteophytes and moderate narrowing of joint space; 4, greatly impaired joint space and sclerosis of subchondral bone.

Early-phase bone scintigrams were performed after intravenous injection of 370 MBq Tc-99m-methylene-diphosphonate, using a double-headed gamma camera (Vertex Plus Epic, ADAC, CA, USA) equipped with a low
energy, high resolution, parallel hole collimator and interfaced to a Pegasys computing system. Blood-pool images of the knees were assessed for elevated perfusion in the synovium, reflecting inflammation (Fig. 1b, c). Tracer concentration was graded visually, using a 3-point scale: 0, normal; 1, mildly abnormal (equal to the adjacent soft tissues); 2, intense tracer accumulation (more than the neighboring soft tissues).

Knee X-rays and bone scans were interpreted by two experienced independent observers, blinded to clinical and other imaging data; in cases of discrepancy a consensus reading was obtained.

At the time of clinical appointment, patients underwent real-time ultrasonography in the supine position with legs flexed at 30°–40°, for the evaluation of knee joints. The presence and amount of joint effusion was assessed from scans through the suprapatellar recess and measurement of its maximum anteroposterior width [8]. Knee joint effusion was classified as absent (<2 mm), small (2–5 mm) and large (>5 mm). Then, ultrasound examination was performed with the patient in prone position and knees in extension, starting at the dorsal and medial aspect of the knee joint, in the transverse plane. The presence of Baker’s cysts was based on hypoechoic, anechoic or mixed echolucency appearances between the semimembranosus and medial gastrocnemius tendons. The examination was completed by imaging of the Baker’s cyst in the longitudinal plane to determine the shape and cephhalocaudal extent. Subsequently, its longest dimension was measured twice and the mean value was entered in analysis (Fig. 1d, e). All ultrasonographic examinations were performed by a trained and experienced physician, using a 7.5-MHz linear-array transducer and standard settings of the device (UM4A, ATL, Washington, USA).

Knee joints were separated into three groups. The control group consisted of knees not fulfilling the criteria of osteoarthritis and no other specific joint disease determined. Knees with chronic osteoarthritic pain were encompassed into two different groups, according to the presence or absence of a Baker’s cyst.

Statistical analysis

Continuous variables are presented as mean ± 1 standard deviation or as median and range and categorical variables as numbers or proportions. In the comparison of categorical data the chi-square test, including Yates continuity correction when appropriate, and Fischer’s exact test were used, with Bonferoni’s adjustment applied for multiple paired comparisons. Continuous variables were compared by the Mann–Whitney rank sum test or the Kruskal–Wallis statistic; the latter was followed by Dunn’s formula for paired comparisons. The values of the diagnostic performance of tests (sensitivity, specificity, etc.) are quoted as point estimate (95% confidence intervals). A P value < 0.05 was considered statistically significant.

Results

One-hundred and ninety-six patients (49 male), aged 69 ± 9 years (range 49–87), were enrolled. Ten patients (three male) had a previous unilateral knee arthroplasty (five right-sided and five left-sided) and these knee joints were excluded by entry criteria. Among the remaining 382 knee joints 90 Baker’s cysts were detected in 72 patients. Cysts had an elongated, crescent or ovoid shape and their longest diameter invariably was in the superior-inferior plane, measured 4.0 ± 1.1 cm (range 1.4–6.2). In all cases a narrow neck connecting the cyst and posterior joint capsule could be visualized, whereas no findings of leak or rupture were noted.

The control group consisted of 54 non-osteoarthritic knees from 54 patients. A Baker’s cyst was detected among those knees which is equal to a frequency of 2%. A clinical diagnosis of osteoarthritis was established in 328 knees from 195 patients (in 133 patients both knees were affected). The median duration of symptoms was 48 months (range 3 months–8 years). In 120 knee joints (37%) discomfort had started no longer than 2 years ago and in 112 knees (34%) the onset of complaints dated back to at least 6 years. Eighty-nine Baker’s cysts were identified in the knees with chronic osteoarthritic pain, providing a prevalence of 27% (P < 0.001, in comparison to the control group). Those cysts were detected in 72 patients (in 55 unilaterally and in 17 bilaterally), providing a prevalence of 37% on a per-patient basis and a frequency of 9% for patients with bilateral cysts.

The characteristics of patients with chronic osteoarthritic knee pain, separated into those with and those without a Baker’s cyst, together with the features of patients with unilateral versus bilateral cysts are listed in Table 1. As inferred from that table, there was no statistically significant difference in the prevalence of Baker’s cysts between male [20/49 (41%)] and female [52/146 (36%)] patients with chronic osteoarthritic knee pain. However, among patients with Baker’s cysts, the frequency of subjects with bilateral cysts was significantly higher in men [9/20 (45%)] than in women [8/52 (15%), P < 0.02].

The features of the 54 knee joints from the control group and those of the 328 knees with chronic osteoarthritic pain, with or without a Baker’s cyst, are presented in Table 2. When separately comparing the control group with either group of osteoarthritic knees (with or without Baker’s cysts) significant differences were found in side, range of
motion, the presence and severity of X-ray changes, the abnormal appearance and degree of tracer accumulation in early-phase bone scans, and the presence and amount of joint effusion. In the discrimination of Baker’s cysts in knees with chronic osteoarthritic pain an abnormal early-phase bone scintigraphy provided a sensitivity of 0.97 (0.96–0.98), a specificity of 0.11 (0.10–0.13) and positive and negative predictive values of 0.29 (0.23–0.34) and 0.90 (0.79–1.0), respectively. The corresponding values provided by an intense tracer accumulation pattern in blood-pool bone scanning were 0.56 (0.46–0.66), 0.60 (0.54–0.66), 0.34 (0.26–0.42) and 0.79 (0.73–0.85).

In knees with chronic osteoarthritic pain the longest diameter of Baker’s cysts did not differ significantly between those with a large joint effusion (4.2 ± 0.9 cm) and those with a small one (3.9 ± 1.1 cm).

Discussion

This study shows that Baker’s cysts are a common ultrasonographic finding in patients with chronic osteoarthritic knee pain, with a prevalence of 27% among affected knees and 37% on a per-patient basis. Bilateral cysts were found in 9% of patients with osteoarthritis and these were more frequent in men than women. Among all clinical, radiographic, ultrasonographic and scintigraphic variables, only an abnormal early-phase bone scan and intense tracer accumulation in the synovium were significantly more frequent in osteoarthritic knees with Baker’s cysts in comparison to those without.

A considerably variable prevalence of Baker’s cysts has been reported previously, depending on the imaging modality and the population studied [1, 6, 17, 20, 21]. In series of
were large (Table 7). An excellent inter-observer correlation was noted in the synovium has obvious appeal [25]. Early-phase bone scintigraphy could discriminate between osteoarthritic and non-osteoarthritic knees, with an abnormally elevated synovial perfusion being significantly more frequent in osteoarthritic knees with Baker’s cysts than in those without (Table 2). Similar were the findings on the frequency of Baker’s cysts according to the intensity of synovial tracer accumulation in blood-pool images. These observations suggest that the presence of Baker’s cysts in knees with chronic osteoarthritic pain is associated with synovial inflammation and its grade. This, in turn, indicates that the development of Baker’s cysts may be stimulated or mediated by synovitis. The resolution of those cysts after intraarticular yttrium-90 treatment of the inflamed synovium in knee osteoarthritis also reinforces that notion [26]. It should be emphasized, however, that Baker’s cysts are present in only a fraction of knees with chronic osteoarthritic pain and scintigraphic evidence of synovitis, possibly because their formation also depends on other factors. Thus, in the scintigraphic examination of osteoarthritic knees only a negative early-phase result may be clinically meaningful (negative predictive value 90%), as it indicates a remote probability for Baker’s cysts. Conversely, an abnormal blood-pool scan is an inadequate predictor of the presence of those cysts (positive predictive value 29%). In this context, the values of the diagnostic performance of an intense tracer accumulation pattern in early-phase bone scintigraphy also imply that this variable would not be particularly helpful.

Potential limitations of the study

The control sample consisted of painless knees from patients with contralateral knee osteoarthritis, in an effort to match for joints considered under the closest possible clinical setting. Although this is not the best possible control group, submitting to the above mentioned array of examinations, including scintigraphy with appreciable radiation exposure, healthy volunteers or different people with no knee discomfort would be impractical and potentially unethical. On the other hand, in our sample various intervals of duration of symptoms, patterns of disease and degrees of radiographic damage were represented in reasonable proportions.

The acquisition of the ultrasonographic data is highly operator dependent. However, an excellent inter-observer agreement has been shown in the assessment of knee pathology with ultrasound, including Baker’s cysts [27], and all examinations were performed by the same physician, having more than 10 years of experience.
Conclusions

Baker’s cysts are a common ultrasonographic finding in knees with chronic osteoarthritic pain and are associated with synovial inflammation in the joint and its grade, as demonstrated by early-phase bone scintigraphy. Clinical variables, radiographic damage and knee joint effusions cannot predict the presence of Baker’s cysts in those knees.

References